cics-rics

CICS, acrónimo en inglés de Customer Information Control System (en español, Sistema de control de información de clientes), es un gestor transaccional, o monitor de teleproceso, que se ejecuta principalmente en mainframes IBM con los sistemas operativos OS/390, z/OS o VSE. También existen versiones de CICS para otros entornos, como OS/400, OS/2, etc. La versión para entornos Unix recibe el nombre de TX Series.
CICS es un sistema diseñado para procesar tanto transacciones online como batch. En los grandes ordenadores IBM zSeries, un sistema CICS puede dar servicio a miles de transacciones por segundo. Es una pieza clave en los servicios de muchos bancos, administraciones y grandes empresas. Las aplicaciones CICS puede ser escritas en diferentes lenguajes como COBOL, PL/I, C, C++, código ensamblador, REXX y Java. Por motivos históricos, la mayoría de aplicaciones CICS están escritas en COBOL o PL/I.

RISC
 
Resulta un tanto ingenuo querer abarcar completamente los principios de diseño de las máquinas RISC, sin embargo, se intentará presentar de una manera general la filosofía básica de diseño de estas maquinas, teniendo en cuenta que dicha filosofía puede presentar variantes. Es muy importante conocer estos principios básicos, pues de éstos se desprenden algunas características importantes de los sistemas basados en microprocesadores RISC.
En el diseño de una máquina RISC se tienen cinco pasos:
  1. Analizar las aplicaciones para encontrar las operaciones clave.
  2. Diseñar un bus de datos que sea óptimo para las operaciones clave.
  3. Diseñar instrucciones que realicen las operaciones clave utilizando el bus de datos.
  4. Agregar nuevas instrucciones sólo si no hacen más lenta a la máquina.
  5. Repetir este proceso para otros recursos.
El primer punto se refiere a que el diseñador deberá encontrar qué es lo que hacen en realidad los programas que se pretenden ejecutar. Ya sea que los programas a ejecutar sean del tipo algorítmicos tradicionales, o estén dirigidos a robótica o al diseño asistido por computadora.
La parte medular de cualquier sistema es la que contiene los registros, el ALU y los 'buses' que los conectan. Se debe optimar este circuito para el lenguaje o aplicación en cuestión. El tiempo requerido, (denominado tiempo del ciclo del bus de datos) para extraer los operandos de sus registros, mover los datos a través del ALU y almacenar el resultado de nuevo en un registro, deberá hacerse en el tiempo mas corto posible.
El siguiente punto a cubrir es diseñar instrucciones de máquina que hagan un buen uso del bus de datos. Por lo general se necesitan solo unas cuantas instrucciones y modos de direccionamiento; sólo se deben colocar instrucciones adicionales si serán usadas con frecuencia y no reducen el desempeño de las más importantes.
Siempre que aparezca una nueva y atractiva característica, deberá analizarse y ver la forma en que se afecta al ciclo de bus. Si se incrementa el tiempo del ciclo, probablemente no vale la pena tenerla.
Por último, el proceso anterior debe repetirse para otros recursos dentro del sistema, tales como memoria cache, administración de memoria, coprocesadores de punto flotante, etcétera.
Una vez planteadas las características principales de la arquitectura RISC así como la filosofía de su diseño, podríamos extender el análisis y estudio de cada una de las características importantes de las arquítecturas RISC y las implicaciones que estas tienen.
 
RISC es una filosofía de diseño de CPU para computadora que está a favor de conjuntos de instrucciones pequeñas y simples que toman menor tiempo para ejecutarse. El tipo de procesador más comúnmente utilizado en equipos de escritorio, el x86, está basado en CISC en lugar de RISC, aunque las versiones más nuevas traducen instrucciones basadas en CISC x86 a instrucciones más simples basadas en RISC para uso interno antes de su ejecución.
La idea fue inspirada por el hecho de que muchas de las características que eran incluidas en los diseños tradicionales de CPU para aumentar la velocidad estaban siendo ignoradas por los programas que eran ejecutados en ellas. Además, la velocidad del procesador en relación con la memoria de la computadora que accedía era cada vez más alta. Esto conllevó la aparición de numerosas técnicas para reducir el procesamiento dentro del CPU, así como de reducir el número total de accesos a memoria.

Al principio de la década de los ochenta se pensaba que los diseños existentes estaban alcanzando sus límites teóricos. Las mejoras de la velocidad en el futuro serían hechas con base en procesos mejorados, esto es, pequeñas características en el chip. La complejidad del chip podría continuar como hasta entonces, pero un tamaño más pequeño podría resultar en un mejor rendimiento del mismo al operar a más altas velocidades de reloj. Se puso una gran cantidad de esfuerzo en diseñar chips para computación paralela, con vínculos de comunicación interconstruidos. En vez de hacer los chips más rápidos, una gran cantidad de chips serían utilizados, dividiendo la problemática entre éstos. Sin embargo, la historia mostró que estos miedos no se convirtieron en realidad, y hubo un número de ideas que mejoraron drásticamente el rendimiento al final de la década de los ochenta.
Una idea era la de incluir un canal por el cual se pudieran dividir las instrucciones en pasos y trabajar en cada paso muchas instrucciones diferentes al mismo tiempo. Un procesador normal podría leer una instrucción, decodificarla, enviar a la memoria la instrucción de origen, realizar la operación y luego enviar los resultados. La clave de la canalización es que el procesador pueda comenzar a leer la siguiente instrucción tan pronto como termine la última instrucción, significando esto que ahora dos instrucciones se están trabajando (una está siendo leída, la otra está comenzando a ser decodificada), y en el siguiente ciclo habrá tres instrucciones. Mientras que una sola instrucción no se completaría más rápido, la siguiente instrucción sería completada enseguida. La ilusión era la de un sistema mucho más rápido. Esta técnica se conoce hoy en día como Segmentación de cauce.
Otra solución más era utilizar varios elementos de procesamiento dentro del procesador y ejecutarlos en paralelo. En vez de trabajar en una instrucción para sumar dos números, esos procesadores superescalares podrían ver la siguiente instrucción en el canal y tratar de ejecutarla al mismo tiempo en una unidad idéntica. Esto no era muy fácil de hacer, sin embargo, ya que algunas instrucciones dependían del resultado de otras instrucciones.